CHAPTER 2-2
LIFE CYCLES: SURVIVING CHANGE

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The General Bryobiotina Life Cycle</td>
<td>2-2-2</td>
</tr>
<tr>
<td>Dominant Generation</td>
<td>2-2-3</td>
</tr>
<tr>
<td>The Life Cycle</td>
<td>2-2-3</td>
</tr>
<tr>
<td>Summary</td>
<td>2-2-13</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>2-2-13</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>2-2-13</td>
</tr>
</tbody>
</table>
CHAPTER 2-2
LIFE CYCLES: SURVIVING CHANGE

The General Bryobiotina Life Cycle

Perhaps one could explain most of plant and animal ecology by explaining all the factors that contribute to and control the life cycle and development of individuals of a species. These interwoven abilities and responses to signals determine who arrives, who survives, and who leaves any given community. It is in this context that plants and animals are able to contend with the changing seasons – they have programmed into their life cycle the means by which to escape when the going gets rough. Thus, it is appropriate that we continue our discussion of bryophyte ecology with a thorough understanding of the limits imposed upon a species by its developmental processes and life cycle. For bryophytes, these limits affect different stages and in different ways from those same limits on the lives of the tracheophytes (lignified plants).

As Niklas (1976) points out, plants "oscillate between morphological and biosynthetic adaptive impasses.” For bryophytes, the limitations imposed by the lack of lignin prevented them from accomplishing significant size and thus limited their morphological development. However, they have achieved tremendous variety in their biochemical development, often having capabilities rare or unknown in tracheophytes. This development is manifest in their biochemical protection from interactions with other organisms, including herbivores, bacteria, and fungi, as well as their ability to survive desiccation, temperature extremes, and low light levels unavailable to tracheophytes in caves and deep water. In addition, their unique biochemically driven life cycle strategies and physiological behaviors permit them to occupy a wide variety of niches – even those polluted with sulfur or heavy metals. It is indeed true that bryophytes have tremendous genetic diversity (see Krazakowa 1996), expressed in their highly variable and rich biochemistry. It appears that our definition of a species as being reproductively isolated is inadequate for representing the variety of biochemical forms that exist among the bryophytes. May Father Hedwig save us from those who want to identify them all by numbers!
Fortunately for the systematists, the life cycles differ among the phyla and classes in the anatomy of their specific reproductive structures and the environmental and biochemical controls that regulate them. But bryophytes have in common the characteristic of retaining the zygote within an archegonium, separating them from all algae.

**Dominant Generation**

One of the ways that plants manage to survive as "immobile" organisms, yet are able to survive the severe changes of seasons, is by having different life cycle stages that are adapted to different conditions. As we progress through the protist and plant kingdoms, we see that most green algae (Chlorophyta), especially in freshwater, spend most of their time in the water and most of them have only one set of chromosomes (1n). Although there is much disagreement about evolutionary pathways among photosynthetic organisms, all evolutionary biologists seem to agree that this life strategy was first, with invasion of land and dominant 2n organisms both coming later. (The dominant generation refers to the most conspicuous and generally the most long-lived generation.) This 1n stage is termed the gametophyte generation (1n or haploid generation that reproduces by gametes in plants) because the generation ends when it produces gametes (sexual reproductive structures that have one set of chromosomes and must unite with another of the same species but opposite strain to continue the life cycle) that join to form the 2n zygote (2n cell resulting from fusion of male and female gametes, i.e. from fertilization; Figure 2). Hence, the zygote is the first structure of the 2n stage or sporophyte generation [diploid (2n) generation that reproduces by meiospores in plants; Figure 2]. The meiospores in many bryophytes are able to survive many years in a dry state, thus permitting at least some taxa to live in habitats that only occasionally get moisture.

**The Life Cycle**

The dominant 1n condition (the nuclear condition, referring to having 1 set of chromosomes, where n represents the number of chromosomes in a complete set) begins as a spore (reproductive cell that develops into plant without union with another cell, usually 1-celled; Figure 3), produced by meiosis (reduction division; nuclear process in which each of four daughter cells has half as many chromosomes as parent cell; produces spores in bryophytes and other plants), hence a meiospore (Figure 2-Figure 3). Linnaeus observed these spores and considered this "fine powder" to be of the same sort as the "dust" liberated from anthers of flowers (Farley 1982). Indeed he was close, although the pollen grain (dust) is already a mature gametophyte in the flower, having divided a few times within the spore wall, whereas the spore of the moss or liverwort is the very first cell of that generation.

Figure 2. Basic sexual life cycle of a bryophyte. Gemmae or other propagules, not shown here, can occur on the leafy plant or on the protonema (pl. protonemata: alga-like, usually filamentous, stage that develops from spores of bryophytes), giving rise to the same generation as its origin. Diagram by Janice Glime.

Figure 3. SEM of tetrad of meiospores of aquatic moss *Fontinalis squamosa*, with fourth spore hidden beneath. Photo by Janice Glime
Bryophytes differ in their life cycle behavior in another way as well. They have two gametophyte phases with very different life forms and often very different requirements for growth. Prior to development of a leafy shoot (or thalloid plant body in many liverworts), they exist in a protonema stage (*proto* = first; *nema* = thread; Figure 5-Figure 10) that develops from the germinating spore (Figure 4). In most mosses, this protonema is truly the "first thread," forming a mat of green filaments (Figure 8-Figure 10), but in most liverworts (Figure 5-Figure 6) and Sphagnopsida (Figure 7) it becomes more thalloid after a few cell divisions.

Figure 4. *Fontinalis squamosa* spore germination. Photo by Janice Glime.

Figure 5. Young thalloid protonema of the thallose liverwort *Cyathodium*. Photo by Noris Salazar Allen.

Figure 6. Thalloid protonema of liverwort *Sphaerocarpus texanus*. Photo from Plant Actions through Eugenia Ron and Tom Sobota.

Figure 7. *Sphagnum* protonemata on a branch of *Sphagnum*. Photo by Andras Keszei on Flickr.

Figure 8. Threadlike protonema of the moss *Funaria hygrometrica*. Photo by Janice Glime.

Figure 9. Moss *Grimmia orbicularis* protonema. Photo from Plant Actions through Eugenia Ron and Tom Sobota.

Figure 10. Protonemata of the moss *Plagiomnium* sp. Photo by Janice Glime.
These protonemata produce buds (Figure 11-Figure 12) and grow into thalloid (thallose liverworts) or leafy plants. These plants are haploid (containing one set of chromosomes; \(1n\)); thus they are the gametophyte generation of the life cycle.

The mature gametophytes are the leafy plants you see (Figure 13-Figure 19), and they produce antheridia (sing. antheridium; male gamete containers; sperm-containers; Figure 20-Figure 27) and archegonia (sing. archegonium; multicellular egg-containing structures that later house embryo; Figure 30-Figure 35) on the same or different plants, depending on the species. Antheridia can number up to several hundred in Philonotis, but a much smaller number is typical (Watson 1964). Archegonia are generally few, but reach as many as 20-30 in Bryum.
Figure 16. *Porella* archegonia in perianth. Photo by Paul Davison.

Figure 17. *Bryum capillare* males with antheridia in a splash platform. Photo by Dick Haaksma.

Figure 18. *Polytrichum juniperinum* males with antheridial splash cups. Photo by David Holyoak.

Figure 19. *Polytrichum ohioense* female showing lack of any special structures at the stem tips, but tight leaves looking somewhat budlike. Note that unopened male splash cups can be seen around the periphery of the clump at the right. Photo by Janice Glime.

The antheridium consists of a layer of cells, the sterile jacket, surrounding the spermatogenous cells (Figure 21), *i.e.*, those that divide to form the spermatocytes (sperm-containing cells). If you remember that this is the gametophyte generation, and therefore already in the haploid state, you will realize that the sperm (Figure 28-29), produced in large numbers within an antheridium, and the egg (non-motile female gamete that is larger than motile sperm), produced singly within an archegonium, must be produced mitotically.

Figure 20. *Plagiochnium insignis* antheridia and paraphyses. Photo from Botany 321 website at the University of British Columbia.
Figure 21. Moss antheridia showing spermatocytes that have been formed by the spermatogenous tissue. Photo by Janice Glime.

Figure 22. Thallose liverwort, *Androcryphia confluens* antheridia along stem. Photo by George Shepherd Creative Commons.

Figure 23. *Andreaea nivalis* antheridium. Photo from botany website at the University of British Columbia.

Figure 24. *Bryum capillare* antheridia and paraphyses at the base of a leaf. Photo by Dick Haaksma.

Figure 25. *Fissidens bryoides* antheridia on special branch. Photo by Dick Haaksma.

Figure 26. *Orthotrichum pusillum* antheridia nestled among leaves. Photo by Bob Klips.
It is then the task of the sperm, with its two flagella, to find a film of water within which to swim to the awaiting egg in the archegonium (Figure 30-Figure 35). This is facilitated, most likely in all cases, by the presence of a chemical gradient produced by the archegonium and serving as an attractant. The archegonium is shaped like a flask with a neck (Figure 30), albeit a short one in some taxa. This neck has an outer layer of cells and a middle layer, the neck canal cells that disintegrate prior to fertilization, leaving this area as the neck canal (Figure 30). It is this disintegration that releases the chemicals that attract the sperm, and the cellular remains provide a fluid medium in which the sperm can swim. Yet it appears that the ability of the sperm to advance any great distance by means of its flagella may be unlikely, if Riccardia pinguis is at all representative. Showalter (1926) found that when sperm of that species were placed at one end of a 1 x 0.5 cm pool, the majority still remained at that end of the pool an hour later.
It appears to be typical for sperm to be shed within their spermatocyte cells, squeezed out of the antheridium by the swelling tissues, both paraphyses (sterile filaments among the reproductive organs; Figure 20-Figure 24) and the antheridium (Figure 20-Figure 27) itself, then drifting to the top of the splash apparatus. It seems usual that the sperm do gain distance from the antheridium when they reach the surface of the surrounding water, especially in a splash cup, and break away from their enclosing spermatocyte cell membrane (Muggoch & Walton 1942). At that point, they seem to disperse readily across the surface of the water, hopefully facilitating their dispersal by splashing raindrops. Yet, this leaves them to fend for themselves once they reach the surface upon which they land, hopefully a female plant or near a female organ. Could it be that they are programmed to avoid wasting energy unless they are within the liquid from a female plant or near a female organ?

In 2009, Rosenstiel and Eppley reported the first study on the longevity of bryophyte sperm. They selected *Pohlia nutans* (Figure 36), a widespread moss that tolerates the high temperatures of geothermal areas and the extremes of the Antarctic. In their study population, 20% of the sperm survived 100 hours in DI or rainwater and lifespan was unaffected by temperatures between 22 and 60°C. Temperatures above 75°C were lethal, and dilution reduced viability. This longevity is much longer than anticipated, but may not be representative of bryophytes with more narrow ecological distributions.
To put this in perspective, compare a study on corn (Zea mays) sperm where the researchers were attempting to improve sperm longevity (Zhang et al. 1992). By adjusting sucrose concentrations, using six sugars, ten buffers, five pH levels, and three membrane protective agents, they screened for the best combination. By adding 0.55 M galactose and other fine-tuning, they improved longevity to 72 hours with 70% viability. This was to keep a sperm alive that would normally travel in the protection of a pollen tube and female gametophyte tissue. For the bryophyte sperm, normal travel is in the harsh and unpredictable environment. In some ways, this might predict that the bryophyte sperm is tolerant of a wider range of conditions, but should we really expect it to live longer?

We know little about the ability of this archegonial fluid to attract the sperm, but it appears that sucrose may be one of the factors, perhaps the only one, involved (Kaiser et al. 1985; Ziegler et al. 1988). These researchers found that in Bryum capillare (Figure 37), once the neck canal cells of the archegonium had disintegrated, the leaves and the archegonia contained less than 20% of the sucrose found in the intact neck region. There was virtually no fructose in the intact archegonium, but the glucose concentration rose after the receptive period ended.

Figure 37. Bryum capillare with capsules. Photo by David Holyoak.

Once the sperm reaches the venter of the archegonium (the bulbous base of the flask; Figure 38), it penetrates the egg and together they form the zygote (Figure 39), that first 2n cell of the sporophyte. Unlike the algae, the bryophyte retains its zygote in the female gametangium (gamete container) and when conditions are right the zygote divides, forming the embryo (young plant still contained in archegonium). This embryo continues dividing (Figure 40) and then specializing, forming eventually a foot, stalk, and capsule (sporangium; spore-container of mosses and liverworts; Figure 40) with a cuticle (water-protective layer; Crum 2001), the mature sporophyte (Figure 41-Figure 51). Because the base of this sporophyte is still firmly anchored in the gametophyte tissue, the sporophyte is necessarily a parasite on the gametophyte, gaining its nutrition through a joining tissue called the haustorium. As a parasite, the zygote necessarily competes for energy, as well as space, with other zygotes or embryos, and thus it is not surprising that multiple capsules are rare. Notable exceptions occur in the mosses Dicranum, Plagiomnium, Rhodobryum, and Mittenia plumula, with as many as nine capsules in Plagiomnium insigne (Figure 52) (Crum 2001).

Figure 38. Moss Polytrichum archegonia. Archeonion on right has an egg in the bottom of the venter and a biflagellate sperm near the neck. Two more sperm are in the neck canal. Photo from botany teaching collection, Michigan State University.

Figure 39. Thallose liverwort Marchantia polymorpha fertilization. Archeonion on left is young and neck canal cells have not broken down yet. The egg cell is in the swollen venter. On the right is an egg that is fusing with the sperm during fertilization. Photo from botany teaching collection at Michigan State University.
Figure 40. Thallose liverwort *Marchantia polymorpha* embryo in archegonium, showing development of the foot, seta, and sporogonium. Note the red-stained neck canal of the archegonium. Photo by Janice Glime.

When meiosis occurs and spores begin development, the supply of nutrition from the gametophyte may be cut off due to material that is deposited in the spaces within the cell walls of the haustorium (Wiencke & Schulz 1978). Water, however, still moves from the gametophyte to the sporophyte.

Figure 41. Liverwort *Blasia pusilla* capsule and stalk. Photo by Walter Obermayer.

Figure 42. Liverwort *Blasia pusilla* open capsule showing spores and elaters. Photo by Walter Obermayer.

Figure 43. Liverwort *Lophocolea cuspidata* capsule with elongated seta. Photo from Botany 321 website at the University of British Columbia.

Figure 44. Moss *Orthotrichum stramineum* capsule with calyptra. Photo by Des Callaghan.
It is this dependence on the gametophyte that makes the sporophyte unique among photosynthetic organisms. On the one hand, it differs from algae by being retained within the archegonium, and on the other it differs from the remainder of the plant kingdom by being dependent on the gametophyte. Furthermore, it lies within the protection of the gametophyte tissue through a great part of its development, although less so in the Bryophyta. This protection shelters it from selection pressures of the environment and could therefore slow the evolution of this generation (Crum 2001). It is this greater stability of sporophyte characters that makes them seemingly more useful for deriving classification within the Bryobiotina (bryophytes).

The details of the foregoing structures differ among the phyla of Bryobiotina and in many cases form the basis for separating the phyla. These are best understood by examining each phylum and class in greater detail.
Summary

The traditional bryophytes (Subkingdom Bryobionta) are classified into three phyla (Marchantiophyta = liverworts, Bryophyta = mosses, Anthocerotophyta = hornworts).

Bryophytes have a dominant gametophyte (1n) generation that limits their ability to store recessive alleles. The life cycle involves a protonema that develops from the germinating spore, becoming thalloid in most liverworts and Sphagnopsida, but becoming a branched thread in most other mosses. The protonema produces buds that develop into leafy gametophores. Mosses in the Bryopsida, but not liverworts or Sphagnum, can produce multiple upright gametophytes from one protonema, hence from one spore.

Gametophores produce archegonia and/or antheridia and the zygote divides to form an embryo that develops within the archegonium. Sporophytes remain attached to the gametophyte and produce spores by meiosis.

Acknowledgments

I appreciate the comments and suggestions of Karla Werner, who offered a beginner's perspective. Noris Salazar Allen offered constructive criticisms on the taxonomic descriptions and reviewed an early draft.

Literature Cited


