CHAPTER 14-7

HYNOBIIDAE, AMBYSTOMATIDAE, AND PLETHODONTIDAE

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hynobiidae</td>
<td>14-7-2</td>
</tr>
<tr>
<td>Hynobius tokyoensis (Tokyo Salamander)</td>
<td>14-7-2</td>
</tr>
<tr>
<td>Salamandrella keyserlingii (Siberian Salamander, Hynobiidae)</td>
<td>14-7-3</td>
</tr>
<tr>
<td>Ambystomatidae (Mole Salamanders)</td>
<td>14-7-3</td>
</tr>
<tr>
<td>Ambystoma laterale (Blue-spotted Salamander)</td>
<td>14-7-3</td>
</tr>
<tr>
<td>Ambystoma maculatum (Spotted Salamander)</td>
<td>14-7-4</td>
</tr>
<tr>
<td>Ambystoma jeffersonianum (Jefferson Salamander)</td>
<td>14-7-5</td>
</tr>
<tr>
<td>Plethodontidae (Lungless Salamanders)</td>
<td>14-7-5</td>
</tr>
<tr>
<td>Plethodon tayalee, formerly Plethodon</td>
<td>14-7-5</td>
</tr>
<tr>
<td>Plethodon serratus (Southern Red-backed Salamander)</td>
<td>14-7-6</td>
</tr>
<tr>
<td>Plethodon nettingi (Cheat Mountain Salamander)</td>
<td>14-7-6</td>
</tr>
<tr>
<td>Plethodon cinereus (Eastern Red-backed Salamander)</td>
<td>14-7-6</td>
</tr>
<tr>
<td>Plethodon dorsalis (Northern Zigzag Salamander)</td>
<td>14-7-7</td>
</tr>
<tr>
<td>Plethodon welleri (Weller's Salamander)</td>
<td>14-7-7</td>
</tr>
<tr>
<td>Plethodon elongatus (Del Norte Salamander)</td>
<td>14-7-7</td>
</tr>
<tr>
<td>Plethodon idahoensis (Coeur d'Alene Salamander)</td>
<td>14-7-7</td>
</tr>
<tr>
<td>Plethodon vandykei complex (Van Dyke's Salamander)</td>
<td>14-7-8</td>
</tr>
<tr>
<td>Plethodon larselli (Larch Mountain Salamander)</td>
<td>14-7-8</td>
</tr>
<tr>
<td>Plethodon glutinosus (Northern Slimy Salamander)</td>
<td>14-7-9</td>
</tr>
<tr>
<td>Plethodon richmondi (Southern Ravine Salamander)</td>
<td>14-7-9</td>
</tr>
<tr>
<td>Plethodon metcalfi, formerly Plethodon jordani metcalfi (Southern Gray-cheeked Salamander)</td>
<td>14-7-9</td>
</tr>
<tr>
<td>Plethodon jordani (Red-cheeked Salamander; Jordan's Salamander)</td>
<td>14-7-9</td>
</tr>
<tr>
<td>Plethodon stormi (Siskiyou Mountains Salamander)</td>
<td>14-7-10</td>
</tr>
<tr>
<td>Plethodon asupak (Scott Bar Salamander)</td>
<td>14-7-10</td>
</tr>
<tr>
<td>Gyrinophilus porphyriticus (formerly Pseudotriton porphyriticus (Spring Salamander)</td>
<td>14-7-11</td>
</tr>
<tr>
<td>Hemidactylium scutatum (Four-toed Salamander)</td>
<td>14-7-11</td>
</tr>
<tr>
<td>Habitat Characteristics</td>
<td>14-7-12</td>
</tr>
<tr>
<td>Mating</td>
<td>14-7-12</td>
</tr>
<tr>
<td>Nest Sites</td>
<td>14-7-12</td>
</tr>
<tr>
<td>Stereochilus marginatus (Many-lined Salamander)</td>
<td>14-7-14</td>
</tr>
<tr>
<td>Desmognathus fuscus (Northern Dusky Salamander)</td>
<td>14-7-15</td>
</tr>
<tr>
<td>Desmognathus ochrophaeus (Allegheny Mountain Salamander)</td>
<td>14-7-16</td>
</tr>
<tr>
<td>Desmognathus monticola (Seal Salamander)</td>
<td>14-7-17</td>
</tr>
<tr>
<td>Desmognathus santeelah (Santeelah Dusky Salamander)</td>
<td>14-7-17</td>
</tr>
<tr>
<td>Desmognathus aeneus (Seepage Salamander)</td>
<td>14-7-17</td>
</tr>
<tr>
<td>Desmognathus wrighti (Pygmy Salamander)</td>
<td>14-7-18</td>
</tr>
<tr>
<td>Desmognathus quadramaculatus (Black-bellied Salamander)</td>
<td>14-7-18</td>
</tr>
<tr>
<td>Desmognathus oooeae (Oocoee Salamander)</td>
<td>14-7-19</td>
</tr>
<tr>
<td>Phaeognathus hubrichti (Red Hills Salamander)</td>
<td>14-7-19</td>
</tr>
<tr>
<td>Ensatinia eschscholtzii (Monterey Ensatinia)</td>
<td>14-7-19</td>
</tr>
<tr>
<td>Hydromantes brunus (Limestone Salamander)</td>
<td>14-7-21</td>
</tr>
<tr>
<td>Hydromantes shastae (Shasta Salamander)</td>
<td>14-7-21</td>
</tr>
<tr>
<td>Summary</td>
<td>14-7-21</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>14-7-22</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>14-7-22</td>
</tr>
</tbody>
</table>
CHAPTER 14-7
HYNOBIIDAE, AMBYSTOMATIDAE, AND PLETHODONTIDAE

Hynobiidae

This is a family of ca 36 species of medium-sized (to ~250 mm) terrestrial and semi-aquatic salamanders (Wake 2011). They occur in parts of Asia, south to Japan, and European Russia (Wikipedia: Asiatic salamander 2011). I could, however, find little information on their associations with bryophytes.

Hynobius tokyoensis (Tokyo Salamander)

Google made a link between *Hynobius tokyoensis* (Tokyo Salamander; Figure 3) and mosses, stating that when this species occurs on the forest floor, it can be found at the entrance of burrows, and under decayed logs, rocks, leaf litter, and moss mats (Kusano & Miyashita 1984). The eggs are deposited in water and the larvae are aquatic. The adults disperse up to 100 m from their breeding site by the time they are 4 years old, suggesting the importance of a suitable forest floor within that proximity.

This species has two completely disjunct distributions in Japan: Fukushima Prefecture southwestward to Kanagawa Prefecture and Aichi Prefecture of the Chubu District of Honshu (Matsui & Nishikawa 2001). It may be, however, that the Aichi population is actually *Hynobius nebulosus* (Matsui et al. 2001). This discontinuous distribution pattern is related to their need for areas kept moist by underground water oozing to the surface, a habitat found only in hills or small mountains (Ihara 2002). Its limited distribution makes it vulnerable to extinction (IUCN 2010).
Salamandrella keyserlingii (Siberian Salamander, Hynobiidae)

The Siberian Salamander seems to be the one Asian representative that has a notable association with bryophytes. It is distributed in northern Asia from Northern Hokkaido, Japan, and Sakhalin and Kurile Islands, Russia, from Kamchatka to eastern European Russia (to 45° E), south to northern Mongolia, northeastern China, and northern and northwestern Korea (Frost 2011).

It is an inhabitant of wet coniferous forests and mixed deciduous forests of the taiga, as well as riparian groves of the tundra and forest steppe (Kuzmin 1999).

This is one of the few amphibians to survive the cold of northernmost habitats. However, some salamanders do take advantage of mosses to provide their winter hibernacula. The Siberian Salamanders (Salamandrella keyserlingii; Figure 4), also known as Dybowski’s Salamander, Manchurian Salamander, and Siberian Newt, are among the most cold-tolerant species (Potapov 1993). They can freeze for many years in the permafrost, then thaw out and go merrily on their way. Some may have been frozen for 10,000 years (Meat on the Web 2008)!

This unusual animal can survive temperatures down to -50ºC, and they have been found preserved in ice with the woolly mammoth. However, there is no scientific evidence to support that ancient age for the salamanders. Rather, they probably fell into a crevasse.

Ambystomatidae (Mole Salamanders)

Ambystoma laterale (Blue-spotted Salamander)

This species is distributed from southern Canada and Alaska, USA, south to the southern edge of the Mexican Plateau. It lives under logs, mosses, and damp leaves or in burrows (LeClere 2011; NatureWorks 2011). The species migrates from wetlands to the forest floor where it spends the winter in underground retreats (Douglas & Monroe 1981). The migrants typically must travel 250 m or more to these sites.

The Blue-spotted Salamander, Ambystoma laterale, also known as Lateral Salamander, Slender Salamander, Silvery Salamander, and Tremblay’s Salamander (Figure 5), occurs in central and eastern North America, but it has become endangered in the lower part of its range (Ohio, Iowa) and is listed as a species of special concern in Indiana (Center for Reptile and Amphibian Conservation and Management). However, the IUCN (2010) lists it as a species of least concern. Clearcutting has been a major contributor to its increasing rarity, but acid precipitation also contributes to embryo mortality (Pough 1976). In northeastern North America it is threatened by acid rain (DeGraaf & Rudis 1983; Knox 1999). Not only is the pH detrimental to its development, but larval activity is lowered at pH levels less than 4.5-5.0, causing larvae to be preyed upon more easily (Brodman 1993; Kutka 1994).
Ambystoma maculatum (Spotted Salamander)

The **Spotted Salamander** occurs from Nova Scotia and Gaspe Peninsula west to central Ontario, Canada, and south through the eastern USA from Wisconsin to eastern Texas and east to southern Georgia, excluding the peninsula of Florida (Frost 2011).

The **Spotted Salamander, Ambystoma maculatum** (Figure 6-Figure 7), also known as Brown-spotted Salamander, Violet-colored Salamander, Yellow-spotted Salamander, Spotted Eft, Large Spotted Salamander is common in peatlands (Amphibians). Their typical home is in the deciduous forest, but they need vernal pools or ponds with no fish so that their eggs can avoid predation (Wikipedia: Spotted Salamander 2008; Figure 7). Oxygen is often a problem for salamander eggs, but *A. maculatum* has solved this problem by having a partner (Orr 1888; Gilbert 1944; Anderson 1971).

The salamander's eggs have a jelly coat that protects the eggs from drying out. However, this coating interferes with oxygen diffusion to the developing embryo. The salamander can solve the problem by partnering with the green alga *Oophila amblystomatis* (Figure 8-Figure 9) (name meaning "loves salamander eggs") (Hammen 1962; Bachmann et al. 1986). Through photosynthesis of the alga, the eggs obtain oxygen. The salamander returns the favor by providing the alga with much-needed CO₂ for photosynthesis (Figure 10). Ryan Kerney of Dalhousie University in Halifax, Nova Scotia, Canada, carried this story further, demonstrating that the algae were actually within the cells of the embryos, closely associated with the mitochondria, and that they benefited from the nitrogen-rich waste produced by the embryos (Petherick 2010; Thoughtnomics 2011).

Researchers have questioned how these algae become associated and enter the cells, particularly in view of the typical immune response known for vertebrates. Kerney found that the algae could be present in the oviducts of adult females, the place where the jelly sacs that surround the embryos form. This suggests the possibility that the algae are passed to the embryos by the mother, but it does not explain how they enter the cells or what prevents the immune system from attacking them. Perhaps they, like the salamanders' own cells, are recognized as part of self at the time the embryo begins to form – an hypothesis that if true could be of tremendous benefit in our understanding of immunity.
Embryos that were raised in continuous light hatched synchronously and at somewhat earlier developmental stages than those in either 12- or 24-hour darkness per day (Tattersall & Spiegelaar 2008). Those embryos without algae or in the dark moved more frequently than those with symbionts in the light. However, in later developmental stages, those in the light had more movements, suggesting that perhaps those without supplemental oxygen were conserving energy by not moving as much.

Like the frogs, larvae of salamanders are sensitive to low pH water. *Ambystoma maculatum* from three ponds in Marquette County, Michigan, USA, were raised at pH 3, 4, and 5 and in pond water pH (Ling et al. 1986). It took only 12 hours for the larvae to die at pH 3. At 4 and 5 the rates of development were significantly slower than those raised at pH above 5. Ling et al. (1986) found that 42% of the ponds in their study had pH levels below 5.5. Some of these were surrounded by a mat of *Sphagnum*. In the pond with a central *Sphagnum* mat, and the lowest mean pH at 4.6, the researchers observed a slower rate of development. It is possible that under the stresses of laboratory conditions they were less tolerant of the lower pH than in their native ponds.

Ambystoma jeffersonianum (Jefferson Salamander)

The Jefferson Salamander (Figure 11) extends from central New Hampshire, USA, and southern Quebec, Canada, southwest to southern Indiana, and east to central Kentucky, western Virginia and West Virginia, USA (Frost 2011). Through a large part of this range it is able to hybridize with *A. laterale*, complicating identification.

The Jefferson Salamander (*Ambystoma jeffersonianum*; Figure 11), also known as Granulated Salamander, Jefferson’s Salamander, Plumbeous Salamander, and Brown Salamander, is among the many amphibians sensitive to conditions of low pH. In a study in central Pennsylvania and New Jersey Pine Barrens, USA, eggs could not hatch at pH below 4.5 (Freda & Dunson 1986). Those ponds with the lowest pH levels typically had abundant *Sphagnum*. *Sphagnum* lowers the pH of the environment around it through cation exchange, releasing H^+ ions in exchange for cations such as Ca^{++} and Mg^{++} (Clymo 1963). In transplant experiments with embryos, mortality of *A. jeffersonianum* increased significantly as pond pH declined (Freda & Dunson 1986). The sensitivity helps to explain amphibian decline in the many sensitive species living with acid rain. A change of only 0.2 pH units can determine whether hatching occurs, making timing of the life cycle crucial for survival of the species.

Plethodontidae (Lungless Salamanders)

This large family is distributed on both sides of the Atlantic, from southern Alaska, USA, and Nova Scotia, Canada, south to eastern Brazil and central Bolivia, and in southern Europe and Korea (Frost 2011). But North America has most of the species. The family comprises 70% of the world’s salamanders. These are known as lungless salamanders because they lack lungs and breathe through their skin. Most members of the large genus *Plethodon* prefer moist substrates (Taub 1961; Sugalski & Claussen 1997; Moore et al. 2001), hence making mosses near streams an ideal location for them. Nevertheless, in the tropics many species are land breeders, including many arboreal species. Bryophytes often play a role in keeping them moist as well as providing cover that hides them from predators. Their need for moisture is likely to be one reason for the preponderance of nocturnal (nighttime) activity among the plethodontid species.

Plethodon teyahalee, formerly Plethodon oconaluftee (Southern Appalachian Salamander)

Both *Plethodon teyahalee* (Southern Appalachian Salamander; also known as Teyahalee Salamander, Southern Appalachian Slimy Salamander, Balsam Mountains Salamander; Figure 12) and *P. serratus* (Southern Red-backed Salamander; Figure 13) may occur in peatlands (Amphibians: Tulula Wetlands). *Plethodon teyahalee* is endemic to the United States, where it occurs at high elevations in the southern Appalachians, eastern USA, in other habitats as well as peatlands. Ash (1997) suggests that adults of the species may move into dry, clearcut areas to avoid competition with the smaller, immature salamanders of the same and other species in the more moist forest sites.
Plethodon serratus (Southern Red-backed Salamander)

This species is also known as Ouachita Red-backed Salamander, Southern Redback Salamander, and Georgia Red-backed Salamander. The **Southern Red-backed Salamander** (Figure 13) is scattered into **disjunct** (disconnected) populations throughout southeastern USA (Frost 2011) where it hides under moss, as well as rocks and rotten logs, and migrates to seeps and springs during dry periods (Aardema 1999).

Plethodon nettingi (Cheat Mountain Salamander)

The endangered relict **Cheat Mountain Salamander** (*Plethodon nettingi*, Plethodontidae; Figure 14), an **endemic** in the Appalachian Mountains, West Virginia, USA, depends on bryophytes, especially the leafy liverwort **Bazzania trilobata** (Figure 15) (NationMaster 2008; Pauley 1985). While in the bryophyte mats, these amphibians feed on small invertebrates. Their territories are small and they seldom move more than a few meters in their lifetimes. Brooks (1945, 1948) reported finding 33 individuals on Cheat Mountain, crawling on moss-covered logs in dense stands of sapling and pole red spruce, sometimes with birch mixed in. On Bickle's Knob, West Virginia, these salamanders began appearing from mosses and under logs just after twilight (Brooks 1945).

Plethodon cinereus (Eastern Red-backed Salamander, Plethodontidae)

The **Eastern Red-backed Salamander** (Figure 16) occurs in the northeastern USA and southeastern Canada, south through northeastern Wisconsin to southern Indiana, southern Ohio, and east of the Appalachian Divide south to northern North Carolina. **Plethodon cinereus** poses a danger to the **Cheat Mountain Salamander** through competition with this much more widespread **Eastern Red-backed Salamander** (NationMaster 2008). The widespread distribution of **Plethodon cinereus** is reflected in having 18 English names listed by Frost (2011). This common salamander includes bogs among its habitats, where it can sometimes be found attempting to rob the pitcher plant leaves of their inhabitants (Hughes *et al.* unpubl.). Analysis of gut contents indicate a diet of midge larvae, ants, mites, and other small invertebrates that live in the bogs. I wonder if this diet makes it poisonous? The red-backed salamander can often be found under a clump of moss such as **Leucobryum glaucum** (Figure 17). At Cap des Rosiers, eastern Quebec, Canada, this salamander was mostly under stones and logs, but one specimen was under moss on a vertical limestone cliff face (Trapido & Clausen 1938).
In this species, adults typically defend the territories surrounding their offspring. However, it appears that mothers cannot recognize their own offspring, nor could the offspring recognize their mothers (Gibbons et al. 2003). The young salamander offspring did not distinguish between mosses scented by their mothers and those with no scent or with scents of unfamiliar females. On the other hand, females chose unrelated offspring significantly more often over their own for acts of cannibalism.

Plethodon dorsalis (Northern Zigzag Salamander)

This salamander (Figure 18) often poses in a Z formation, hence its name. Other English names include Ashy Lizard, Zigzag Salamander, and Eastern Zigzag Salamander. It occurs in lower Midwestern USA from southern Indiana and southern and eastern Illinois to western Kentucky, central Tennessee, northern and western Alabama, and northeastern Mississippi (Frost 2011). Although Brode (1957) found it under sandstone slabs, Ferguson (1961) reported it from the bases of cliffs in Tishomingo County, Mississippi, USA, where it was under moist mosses, or from leaf litter.

Plethodon welleri (Weller’s Salamander)

Other English names for Plethodon welleri (Figure 19) include Spot-bellied Salamander and Spotbelly Salamander. **Weller’s Salamander** occurs at higher elevations in Tennessee, north to mountains in Virginia (Frost 2011). Organ (1960) reported eight nests of this salamander, located from mid-August to early September between the upper rotting surfaces of conifer logs and the mat of 5-10 cm of mosses.

Plethodon elongatus (Del Norte Salamander)

In southwestern Oregon and northwestern California, USA, the **Del Norte Salamander (Plethodon elongatus)** (Figure 20) is restricted to old-growth forests (Welsh 1990) and may require the moss cover that develops there. These forests range up to 560 years old and have more favorable microclimates than do the young forests. The **Del Norte Salamander (Plethodon elongatus)** rarely occurs in open water and seems to require the moisture of mosses, rocks, and organic matter. In northwestern California, Welsh and Lind (1995) sampled 57 sites and found a mean of 20 individuals at sites with moss as ground cover, but only 6.9 individuals at sites with none. The need for mosses meant that these salamanders also needed late successional stage forests where mosses had had time to develop significant cover. These habitats tended to be cooler with more moist microclimates among the mosses.

Plethodon idahoensis (Coeur d’Alene Salamander)

Plethodon idahoensis (formerly Plethodon vandykei idahoensis), the **Coeur d'Alene Salamander** (Figure 21), lives further east in the drainage areas of the Selway River.
of northern Idaho and the Bitterroot River of extreme western Montana, USA, as well as in the Duncan and Columbia River drainages of southeastern British Columbia, Canada (Frost 2011). The **Coeur d’Alene Salamander**, *Plethodon idahoensis*, is the only plethodontid in the northern Rocky Mountains (AmphibiaWeb 2004).

This salamander can be found in springs, seepages, streamside, or spray zones of waterfalls (Discover Life 2012; Figure 21-Figure 22). These habitats often have bryophytes and the **Coeur d’Alene Salamander** can most likely be found on and under these bryophytes. Wilson (1990) reports one such case under bryophyte mats on cobbles along a stream at ~540 m in the Nez Perce National Forest, Idaho, USA.

The eggs of the **Coeur d'Alene Salamander** are produced in grapelike clusters, and larvae of this species develop within the eggs; thus, no tadpoles exist (Wikipedia: Coeur d'Alene Salamander 2011).

The Van Dyke’s Salamander (Figure 23), also known as Van Dyke Salamander and Washington Salamander, occurs on the Olympic Peninsula and in the southern Cascade Range of western Washington, USA, at 0-1550 m asl (Frost 2011). This species, along with other members of its species complex, is frequent under moss mats (Slater 1933). *Plethodon vandykei*, *sensu stricto*, is most common near streams, where it uses the mosses and moist slabs of bark at tree bases for cover.

During the day these salamanders are typically found under stones and mosses within streams, but when they search for food after dark they wander out of the water and hunt streamside. McIntyre et al. (2006) suggested that *P. vandykei* (Figure 23) is most common in habitats that are able to maintain both cool and hydric conditions; this species is sensitive to both heat and desiccation. Mosses provide such habitats, particularly in seeps. Mcintyre and coworkers hypothesized that this would result in a positive association of this species with early successional stages that were dominated by bryophytes and graminoids, while having a negative association with leaf litter. Typically, in the Cascade Range of Washington State, USA, the mosses were associated with bedrock and small cobble, not soil. Surroundings of moist bryophytes would permit this and other members of the genus to absorb water directly through their skin (Spotila 1972). Seeps typically provide these ideal habitats by providing stability of both temperature and moisture (Hynes 1970; Huheey & Brandon 1973).

The **Larch Mountain Salamander**, *Plethodon larselli* (formerly *Plethodon vandykei larselli*; Figure 24), occurs in the Lower Columbia River Gorge of Oregon and Washington, USA (Frost 2011). It inhabits the lava talus slopes, and Burns (1962) found it among mosses on the side of a steep andesite (dark grey fine-grained volcanic rock) cliff.
Figure 24. *Plethodon larselli*, the Larch Mountain Salamander. Photo © Henk Wallays.

Plethodon glutinosus (Northern Slimy Salamander)

The Northern Slimy Salamander (Figure 25) is a large (11.5-20.5 cm total length) terrestrial salamander (Virginia Department of Game and Inland Fisheries 2011) that lives mostly in bottomland and wet hardwood forests of eastern USA (Beamer & Lannoo 2011a). This species lives under logs, rocks, and in tunnels in the soil; there seems to be no documentation that it lives among bryophytes. At night it traverses the forest floor, hunting for food. At that time, mosses may aid in rehydration, but this theory has not been tested. However, it does at times deposit eggs under mosses (Virginia Department of Game and Inland Fisheries 2011). The eggs are a creamy white with an average of 5.5 mm diameter.

When handled, the Northern Slimy Salamander secretes a noxious sticky substance from its tail, a protection against predators (Virginia Department of Game and Inland Fisheries 2011). Brodie *et al.* (1979) found that this secretion deterred shrews, causing them to avoid the salamander or to spend more time to kill it, resulting in less predation than that on the non-noxious *Desmognathus ochrophaeus*. As an added deterrent it lashes its tail, further exposing the secreting glands.

Figure 25. *Plethodon glutinosus* on mosses. Photo by Vide Ohlin.

Plethodon richmondi (Southern Ravine Salamander)

This salamander can be found in parts of Pennsylvania, Ohio, Kentucky, Indiana, and West Virginia (Pauley & Watson 2011). It is restricted to woodlands (Duellman 1954). Sexual maturity requires three years in males and four years in females (Nagel 1979). The Virginia Department of Game and Inland Fisheries (2011) reports that this species has a spring courtship, followed by laying its eggs in damp logs and mosses in the early summer. On the other hand, Nagel (1979) found that in northeastern Tennessee, mating occurred from November to March, with a mean of 8.3 eggs deposited in May.

Plethodon metcalfi, formerly *Plethodon jordani metcalfi* (Southern Gray-cheeked Salamander)

The Southern Gray-cheeked Salamander, *Plethodon metcalfi* (Figure 26), is also known as Unspotted Salamander, Metcalf's Salamander, Clemson's Salamander, Clemson Salamander, Highland's Salamander, Highlands Salamander, Rabun Bald Salamander, Rabun Salamander, Frosted Salamander, and Southern Graycheek Salamander. It is surprising to have so many English names for a salamander that ranges only from the southwestern corner of North Carolina and extreme northwestern South Carolina into extreme northeastern Georgia, USA (Frost 2011). Organ (1958) found a courting pair on moss of the forest floor in mid August, but little else seems to be known of its relationship with bryophytes. The food of this species (snails, mites, spiders, insect larvae, springtails, millipedes, and centipedes) suggest that it could subsist on organisms found among bryophytes, making them potential hunting grounds (Whitaker & Rubin 1971).

Figure 26. *Plethodon metcalfi*, the Southern Gray-checked Salamander, on a bed of mosses. Photo by Bill Peterman.

Plethodon jordani (Red-cheeked Salamander; Jordan's Salamander)

In the higher elevations of the Great Smoky Mountains, this species (Figure 27-Figure 28) is most abundant in the red spruce-Fraser's fir forest where the forest floor is covered with a heavy layer of mosses and little soil (King 1939). Its greater abundance in forests with a predominant bryophyte cover suggests that bryophytes may be important in maintaining the moisture required in its niche.

Although its range is somewhat small, it is widespread within that range and does not appear to be endangered (Beamer & Lannoo 2011b). Nevertheless, despite its protection within the Great Smoky Mountain National Forest, it could be endangered by the infestation of the
balsam woolly adelgid beetle (Adelges piceae, Adelgidae, Hemiptera) that has caused considerable canopy changes. As new openings impact the bryophytes (Stehn et al. 2010a, b) by creating more light, potentially reducing their cover, this species could lose considerable habitat.

Figure 27. Red-cheeked Salamander, Plethodon jordani, on a bed of Thuidium. Photo by Matthew Niemiller.

Figure 28. Plethodon jordani on a bed of bryophytes. Photo by Bill Peterman.

Figure 29. Plethodon stormi, on a rock with mossy patches. Spotted coloration blends somewhat with the rock, but not with the moss. Photo © Gary Nafis through CaliforniaHerps.com.

Plethodon asupak (Scott Bar Salamander)

Like the previous species, the Scott Bar Salamander (Figure 30-Figure 31) is associated with moss-covered talus rocks (Figure 32; Gary Nafis, pers. comm. 28 April 2011), and it likewise has a restricted distribution, occurring in the Siskiyou Mountains (700-1300 m asl) at Muck-a-Muck Creek above Scott Bar, Siskiyou County, California, USA. Plethodon asupak is listed only as vulnerable (IUCN 2010), being threatened by habitat loss (Lu 2009). It prefers north-facing slopes with closed canopy and talus rock (Lu 2009).

Figure 30. Plethodon asupak on a bed of mosses. Photo © Gary Nafis through CaliforniaHerps.com.

Figure 31. Plethodon asupak adult and juvenile. Photo by Timothy Burkhardt.

Plethodon stormi (Siskiyou Mountains Salamander)

The Siskiyou Mountains Salamander (Figure 29) has a narrow distribution in southwestern Jackson County, Oregon, and northern Siskiyou County, California, USA (Frost 2011). Its narrow distribution and loss of habitat cause it to be listed as endangered (IUCN 2010). It is associated with moss-covered rocks (Gary Nafis, pers. comm. 28 April 2011). It appears that nothing is known about nests, eggs, or young (see Bury & Welsh 2011). Adults sit quietly and wait for their prey of collembolans, termites, beetles, moths, spiders, and mites (Nussbaum et al. 1983). They dart out from whatever cover they are using, so it is likely that some take advantages of the humidity and cooling ability of the mosses that abound in some of their talus habitats, using them as cover and re-moistening sites.
Figure 32. Rocky forest floor where mosses contribute to the habitat of *Plethodon asupak*. Photo © Gary Nafis through CaliforniaHerps.com.

Gyrinophilus porphyriticus, formerly *Pseudotriton porphyriticus* (Spring Salamander)

This common species (Figure 33) has 25 English names in the 2011 list of Frost, even though its range is in just one area of North America: eastern USA from Canada to Georgia-Mississippi (Frost 2011). The most common alternative name among these is Blue Ridge Spring Salamander. The number may not be so surprising when one recognizes that there have been 34 Latin synonyms – it seems to be rather misunderstood. In Tishomingo County, Mississippi, Ferguson (1961) found a single salamander "resting" on a mat of mosses by a spring at the base of an over-hanging cliff. Scott LaGrecca (pers. comm. 11 August 2014) found "a couple" of them among *Fontinalis* in a stream in the Berkshires, Massachusetts, USA.

Figure 33. *Gyrinophilus porphyriticus*, the Blue Ridge Spring Salamander, on a bed of mixed mosses. Photo by Bill Peterman.

Pseudotriton ruber (Red Salamander)

The Red Salamander (Figure 34) occurs from southern New York to northwestern Florida and west to eastern Ohio, central Kentucky and southeastern Louisiana, USA. Burger (1933) found a single adult in torpor under mosses of a drying bog in Pennsylvania in mid-summer. Bishop (1941) also observed adults under mats of *Sphagnum*. As discussed earlier, this salamander has a complex of mimics that take advantage of its poisonous skin secretions.

Figure 34. The Red Salamander, *Pseudotriton ruber*, on a bed of terrestrial mosses. Photo by John White.

Hemidactylium scutatum (Four-toed Salamander)

This seems to be the most famous of salamanders for dependence on mosses. Whenever I ask a North American herpetologist about salamanders associated with mosses, this species is mentioned, usually first. The Four-toed Salamander (Figure 35) is also known as Scaly Salamander, Scaly Lizard, and Eastern Four-toed Salamander. Its distribution is fairly continuous from extreme southern Maine, USA, and extreme southern Quebec and Ontario, Canada, west to northern Wisconsin, USA, south to the fall line [area where an upland region (continental bedrock) and a coastal plain (coastal alluvia) meet; an unconformity] in North Carolina, South Carolina, Georgia, Alabama, and Tennessee, USA (Frost 2011). There may be additional disjunct populations in nearby areas.

Figure 35. *Hemidactylium scutatum* (Four-toed Salamander) on a bed of mosses. Photo by John D. Willson.

The Four-toed Salamander (*Hemidactylium scutatum*, Plethodontidae; Figure 36) is one of the best known of the amphibian moss inhabitants. Blanchard (1923) reported that all of his finds near Ann Arbor, Michigan, USA, were among *Sphagnum* clumps of woody
bog shrubs within 15 cm above the water surface. The need for deep moss may be explained by the critical temperature maximum (CTM) for this species. In experiments, Hutchinson (1961) found the CTM to be 36.74°C, a temperature easily exceeded at the moss surface on a sunny day, but not likely to be achieved 15 cm below. The Four-toed Salamander, Hemidactylium scutatum (Figure 35), had a CTM of 36.7 ± 0.11°C.

But, as early as 1918, Wright reported that this species was disappearing from New York due to draining of wetlands. Today the species is listed as endangered or rare in a number of states (Harris 2011), but is listed as a species of least concern on the 2010 IUCN Red List.

Fowler (1942) found a single adult under a Sphagnum mat in a shoreline bog of a lake in a Maine coniferous forest. King (1944) found it on fallen tree trunks and logs in a gum swamp in the Great Smoky Mountains National Park. Burger (1933) found two inactive individuals during the last week of March in Pennsylvania, again in swampy conditions. But apparently it has a broader habitat than just boggy or swampy land. Blanchard (1928) reported one adult male in Sphagnum in Reese's Bog, northern Michigan, USA, and argued that the apparent scarcity of the species may be due to its secretive habit of hiding among the Sphagnum.

Habitat Characteristics

Bleakney (1953) revealed the role that mosses could play in the distribution of this species: "The first record for the province dates back to 1934 when the Arthur Dean's Nursery in Halifax sent a specimen to the Nova Scotia Museum of Science in Halifax. The salamander was correctly identified, but, because the northern limit of its range was believed to be southern Maine, the occurrence of this specimen was credited to introduction via ship's cargo. However, when in 1951 the nursery records were consulted, it was revealed that this Four-toed Salamander (Figure 35) had actually come from a load of moss gathered for the nursery from just outside the city."

Because so little was known of the habitat use of this species, Chalmers and Loftin (2006) investigated these relationships in order to build a predictive model of habitat. Among the predictors, a shoreline of Sphagnum species was important, along with wood substrate, water flow, and several plants. Interestingly, the shrub sheep laurel (Kalmia angustifolia) was a negative predictor, as was deciduous forest canopy. In Canaan Valley, West Virginia, USA, this species is likewise common in pond habitats with mosses, typically Sphagnum, or loose bark on logs that can provide nest cover (Pauley 2007). After breeding season, the Four-toed Salamanders (Figure 35) leave the aquatic habitat to forage among the forest litter.

Mating

The species mates in late summer and into fall or even early winter. Courtship is an entertaining set of activities and responses, often occurring on peat mosses. The story reminds me of what we as children called Eskimo kisses. The male rubs his nose on the female's nose (Harding 1997; Petranka 1998). Then he circles her with his tail bent at a sharp right angle. If he is lucky, the female straddles his tail and presses her snout on the base of his tail. After a time, the male begins to move forward, tail undulating, and starts to deposit spermatophores. The female follows close behind, picking up the sticky spermatophores. With her snout still against the male's tail, she deposits the spermatophores in her cloaca (posterior opening for the intestinal, reproductive, and urinary tracts) while doing a straddle walk. After about 20 minutes the mating and fertilization are completed. It is not until spring that the female searches for a suitable nesting site to lay her eggs.

Nest Sites

Numerous studies indicate that mosses are preferred nest sites for laying eggs. Wahl et al. (2008) found that when choices of moss, grasses, and sedges were available 89% of the nests at three montane pond sites in Virginia, USA, were in clumps of Sphagnum. These sites had steeper banks, lower pH, and faced north more often than expected by chance. These three factors were correlated with embryonic survival. North-facing nests were cooler than those facing south.

The female typically lays her eggs among mosses at the edge of forest ponds and water holes (David Taylor, Bryonet 3 February 2009) where spaces will allow the larvae to wiggle down to the water (Linton & Gascho Landis 2005). Headstrom (1970) tells us that this salamander makes a simple cavity in Sphagnum (Figure 37-Figure 38), sometimes making use of a natural opening. Each cavity takes several minutes to construct, and it may take hours to provide for the entire clutch (Gates 2002). It is usually not far from open water and may be along the sides of a moss-covered rock that projects into the water. The eggs are sticky and adhere to the mosses. They have an added advantage – the eggs are unpalatable to insects, giving them protection in the mossy habitat that often houses insects (Hess & Harris 2000).

As already suggested, this species is best known for its occurrence among mosses in bogs and poor fens. Bleakney and Cook (1957) reported two females in Nova Scotia with eggs under Sphagnum mosses on logs. The logs hung over a stream and the two egg clutches had 36 eggs. It appears that the number of eggs in the clutch may be diminishing. Bishop (in Gilbert 1941) considered clutch sizes to range 40-60, with an average of 50 per female. But Cornell researchers found that after 1920 the averages were less than 50.
Figure 37. Female **Four-toed Salamander** (*Hemidactylium scutatum*) guarding her eggs in her nest of *Sphagnum*. The *Sphagnum* has been parted so that the picture could be taken. Photo by Minnesota DNR.

Figure 38. Eggs of *Hemidactylium scutatum* among non-*Sphagnum* mosses. Photo by Jim McCormac <http://jimmccormac.blogspot.com>.

The females typically lay their eggs in such mosses as *Sphagnum* and *Thuidium* spp. (Wood 1955; Harris 2005). Chalmers (2004) found 238 nests in 36 wetlands in Maine, a state where the species is listed as one of Special Concern, along with eleven other states. Furthermore, it is listed as Threatened in Illinois and as Endangered in Indiana. Chalmers was able to locate these 36 new sites by using the predictive ability of shorelines with *Sphagnum*. The nests were more common on shorelines with steeper slopes and deeper nesting vegetation, especially with moss and *Ilex verticillata* (winterberry), but were negatively associated with *Spiraea alba*, *Chamaedaphne calyculata*, and *Kalmia angustifolia* when they were within 1 m of the shoreline. Wood (1955) reported that the **Four-toed Salamander** surrounds its nest with liverworts, as well as many species of *Sphagnum*. *Sphagnum* is an important nest material (Wallace 1984), where the female deposits its eggs in mossy hummocks above the waterline where the eggs remain moist but don't drown (NJ Division of Fish & Wildlife 2009; Richard Andrus, pers. comm.; David Taylor, Bryonet 3 February 2009). Although many herpetologists assume that *Sphagnum* is preferred for nesting (Figure 37), females also deposit eggs under other species such as those of *Atrichum* (Figure 39) (David Taylor, Bryonet 3 February 2009), *Sphagnum palustre* (David Taylor, pers. comm. 25 October 2011), *Thuidium* (Figure 40), *Mnium* (probably now *Plagiomnium* or *Rhizomnium*), *Climaciun* (Gilbert 1941; Wood 1955; Easterla 1971; Petranka 1998; Harris 2009), *Thamnobryum allegheniense*, *Hypnum* sp., and in, as well as under, *Aulacomnium palustre* (Figure 41) (David Taylor, Bryonet 3 February 2009). In fact, in Kentucky, USA, John MacGregor (pers. comm. 4 February 2009) finds that most of the nests are under *Thuidium* (Figure 40). Many taxa of both mosses and liverworts surround the nests, contributing to the content of the nests (Harris 2009). The female often remains with the eggs until they hatch (Figure 39).

Figure 39. Female **Four-toed Salamander** (*Hemidactylium scutatum*) guarding her eggs in her nest amid the moss *Atrichum* sp. Photo by John D. Willson.

Figure 40. *Thuidium delicatulum*, a common nest moss for the **Four-toed Salamander** (*Hemidactylium scutatum*). Photo by Michael Lüth.

Figure 41. *Aulacomnium palustre*, a suitable moss for egg deposition by the **Four-toed Salamander**. Photo by Janice Glime.
Despite the numerous reports on eggs of this species in *Sphagnum*, Wood (1953) found greater mortality for eggs in *Sphagnum* than for those laid on other genera. Overcrowding in large nests resulted in more dead eggs than for loosely placed eggs of small nests. Breitenbach (1982) found that solitary brooding was more likely to occur when there were abundant suitable nesting sites. In a Michigan study, only 12% of 109 nests were communal, with 13 of 14 nests in *Sphagnum* (Breitenbach 1982). Hence, greater reproductive success is likely to occur when there is more moss habitat available for cover. Nest disturbance can cause desertion of the nest, so nests hidden among mosses are less likely to be abandoned.

Wood (1955) found that the salamanders preferred thick mosses that contained many natural crevices where eggs could be placed, compared to shallow, thin mosses lacking such depressions. Gilbert (1941) similarly found that dense mosses such as those at tree bases and stumps or around hummocks did not seem to be desirable, whereas 27 out of 32 nests were in loose mosses along logs.

Humphrey (1928) actually observed the female laying eggs in captivity. She had available to her *Sphagnum* in a dish. She actually turned upside down to lay the eggs on the overlying *Sphagnum*. On a North Carolina, USA, coastal plain, three out of twenty Four-toed Salamanders laid their eggs on the underside of "sheet" moss (Schwartz & Etheridge 1954). Typically, the female repeatedly turns onto her back before laying eggs, perhaps to ensure the eggs are attached to the mosses instead of the underlying substrate (Noble & Richards 1932; Bishop 1941).

One problem that could further endanger such diminishing species as *Hemidactylium scutatum* is predation by inhabitants of the moss. Hess and Harris (2000) experimented with palatability of eggs and found that carabid beetles from the pond did not eat the eggs, but beetles from a stream punctured the eggs. However, they ate few of them. As noted earlier, Hess and Harris suggested that the eggs might contain a toxic or noxious chemical in their gelatinous layer. This avoidance of egg predation helps to explain the lack of nest defense and desertion of nests by this species. However, we have seen that the females seem to stay with the eggs at least some of the time.

Stereochilus marginatus (Many-lined Salamander, Plethodontidae)

The Many-lined Salamander (Figure 42), also known as Margined Triton and Margined Salamander, occurs on the Atlantic coastal plain from southeastern Virginia to northeastern Florida, USA (Frost 2011). Gerhardt (1967) found this species in a cypress swamp in Georgia, USA, among the *Sphagnum* in pine flatwoods, where it cohabited in the mosses with the Broad-striped Dwarf Siren (*Pseudobranchus striatus*), Carpenter Frog (*Lithobates virgatipes*) larvae, Easter Lesser Siren (*Siren intermedia*), and the Mud Snake (*Farancia abacura*). Hatching can be fun to watch for both the Four-toed Salamander *Hemidactylium scutatum* and Many-lined Salamander *Stereochilus marginatus* (Figure 42) (both *Plethodontidae*) when they make their nests in *Sphagnum* or rotting wood (Blanchard 1934; Duellman & Trueb 1986). When the larvae hatch, they wriggle down the moss to the water. These larvae need to beware of cohabiting newts that like to have them for dinner (Wells & Harris 2001).

Adults of *Stereochilus marginatus* are somewhat safer than the larvae due to several anti-predator mechanisms. They secrete a glandular substance from the dorsal part of the tail, "threaten" by raising and undulating the tail, flip over to expose the yellow venter with black spots (warning colors), secrete noxious substances from the skin, and lose their tails. The tail is lost when the salamander is attacked, even if the salamander has not been captured (Brodie 1977). The tail continues to wiggle after it has been detached (Gates 2002), possibly attracting the attention of the would-be predator.

In the Dismal Swamp, Virginia, where *Sphagnum* spp. are common, females seem to prefer laying their eggs on the brook moss *Fontinalis* sp. (Figure 43) (Wood & Rageot 1963; Rabb 1966). Bruce (1971) reported that females of *Stereochilus marginatus* in the Croatian National Forest in eastern North Carolina, USA, laid eggs underwater or just above the surface, with those underwater being laid singly or in small groups attached to stems of mosses.
Figure 43. *Fontinalis antipyretica* in a dry stream bed. During seasons of good flow, this is a suitable site for eggs of the Many-lined Salamander. Photo by Janice Glime.

Desmognathus fuscus (Northern Dusky Salamander)

The well-known salamander *Desmognathus fuscus* (Figure 44-Figure 46) occurs in Southern New Brunswick and southern Quebec, Canada, south of the Great Lakes to southeastern Indiana, western Kentucky, eastern Tennessee, and northeastern Georgia (excluding the coastal plain of North Carolina and South Carolina), USA.

Figure 44. The Northern Dusky Salamander, *Desmognathus fuscus*. Photo by John D. Willson.

Figure 45. *Desmognathus fuscus*. Photo by Todd Pierson.

The genus *Desmognathus* seems to be a common one under bryophytes. Adults may be located under mats of moss and other cover (Hom 1987). Their typical strategy when disturbed is to disappear into the mud (Tilley 1981). In New York, the Northern Dusky Salamander was the most common salamander species when Bishop compiled his list in 1922 (Bishop 1923). But lack of suitable sites may limit breeding and population growth throughout much of its range.

In Tennessee, USA, Hom (1987) found nests mostly on the banks of streams (Figure 47) in moist soil under mosses [*Atrichum undulatum* (Figure 50), *Mnium affine*, *Thuidium delicatulum* (Figure 40)] and the leafy liverwort *Trichocolea tomentella*, accounting for 85-95% of the observations over a three-year period.

Unlike many amphibians, most *Desmognathus* species do not have a larval stage, but instead begin life as miniature adults (Chippindale & Wiens 2005); *i.e.*, they have direct development. It appears that the most advanced forms have a larval stage that may have secondarily returned to the water, as in the Northern Dusky Salamander. The Northern Dusky Salamander, *Desmognathus fuscus* (Figure 46), selects sites in advance for laying eggs (Hom 1988). Burger (1933) found a cluster of eleven eggs under moss on a mountain slope in Lebanon County, Pennsylvania, USA, during the first week of September. These larvae were just ready to emerge, and when disturbed several did break through the egg membrane.

Females can occur in clusters, such as the three females hiding with their egg clusters under a 20-cm square of moss covering mucky soil of a springy swamp (Bishop 1923). Females of the species tended to brood their egg clusters under mosses (Hom 1987). Montague (1977) showed experimentally that *Sphagnum* served as a sufficiently moist site for a clutch of eggs in an environmental chamber at 14°C. Eggs are deposited in moist soil under mosses (Figure 48), rotting logs, rocks, and leaf litter (Dennis 1962; Snodgrass et al. 2007). Clutch size typically ranges 5-34 with a mean in the mid 20's (Means 2011). Hatching requires 45-60 days, and the female remains with the eggs during this time (Snodgrass et al. 2007). Females seem to recognize tradeoffs in parental care (Forester et al. 2005). In an experiment where eggs of several clutches were divided and placed at 13 and 21°C, those at the higher temperature developed faster. When the female was introduced to her two sets of eggs, she spent most of her time caring for those that were further developed. But when the young hatch, she leaves them to fend for themselves.
Desmognathus ochrophaeus (Allegheny Mountain Dusky Salamander, Plethodontidae)

The Allegheny Mountain Dusky Salamander (Figure 49) occurs from the mountains of southeastern Kentucky, through the Adirondack Mountains, USA, to southern Quebec, Canada.

As for many salamanders, seeps provide this species with both moisture and temperature stability (Huheey & Brandon 1973). This is true even on rock faces, where they are able to maintain moisture among mosses. But this highly variable species also inhabits forest streambanks where it lives among mosses, under rocks, leaves, bark, and logs, and in rock crevices (Tilley 1972; Mushinsky 1976). Experiments indicate that the adults will select some habitats based on the one in which they experienced early development.

Bruce (1990) tried to explain the selection pressures accounting for size differences between *D. ochrophaeus* and *D. monticola* (Seal Salamander). The more aquatic *D. monticola* is larger than *D. ochrophaeus*. Bruce located most of the egg clutches under mosses at Wolf Creek in the Appalachian Mountains. Eggs of *D. ochrophaeus* were significantly smaller than those of *D. monticola* and also experienced earlier maturation, making them smaller as adults. Bruce suggested that the decrease in age at maturation in *D. ochrophaeus* accompanied the shift to a terrestrial habitat. The selection pressure could be competition or predation – or both.

Whereas Bruce suggests that the smaller size leads to greater predation, Forester (1979a) suggests that the predation is reduced by greater parental care of egg clutches in this species. Furthermore, those clutches unprotected by females were more susceptible to phycomycete fungi, in as little as 12 days after they were deposited. It appears that the female uses her head and mouth to remove infected eggs and to gently oscillate them through movements of the throat (gular) region; mechanically vibrated clutches likewise had a higher percentage of survival than non-vibrated controls. Females were able to defend their eggs against other members of their own species and against ground beetles, but were not so successful against larger salamanders or Ringneck Snakes (*Diadophis punctatus*). Nests often occurred under mats of the mosses *Thuidium delicatulum* (Figure 40), *Atrichum undulatum* (Figure 50), and *Plagiomnium ciliare* (Figure 51).

Bruce (1990) tried to explain the selection pressures accounting for size differences between *D. ochrophaeus* and *D. monticola* (Seal Salamander). The more aquatic *D. monticola* is larger than *D. ochrophaeus*. Bruce located most of the egg clutches under mosses at Wolf Creek in the Appalachian Mountains. Eggs of *D. ochrophaeus* were significantly smaller than those of *D. monticola* and also experienced earlier maturation, making them smaller as adults. Bruce suggested that the decrease in age at maturation in *D. ochrophaeus* accompanied the shift to a terrestrial habitat. The selection pressure could be competition or predation – or both.

Whereas Bruce suggests that the smaller size leads to greater predation, Forester (1979a) suggests that the predation is reduced by greater parental care of egg clutches in this species. Furthermore, those clutches unprotected by females were more susceptible to phycomycete fungi, in as little as 12 days after they were deposited. It appears that the female uses her head and mouth to remove infected eggs and to gently oscillate them through movements of the throat (gular) region; mechanically vibrated clutches likewise had a higher percentage of survival than non-vibrated controls. Females were able to defend their eggs against other members of their own species and against ground beetles, but were not so successful against larger salamanders or Ringneck Snakes (*Diadophis punctatus*). Nests often occurred under mats of the mosses *Thuidium delicatulum* (Figure 40), *Atrichum undulatum* (Figure 50), and *Plagiomnium ciliare* (Figure 51).
Figure 51. *Plagiomnium ciliare*, a moss that is often home to eggs of *Desmognathus ochrophaeus*. Photo by Annie Martin, Mountain Moss Enterprises.

Females in this species have a homing instinct for their own nests, at least over short distances (Forester 1974, 1979b). When 117 females were moved 2 m from their nests, 78% returned to their nests within 24 hours. They were attracted to unattended eggs, but were able to distinguish their own nests from others with unattended eggs, only occasionally selecting the eggs of another female in preference to their own. For example, seven females were nesting on a single moss-covered rock. When they were marked and moved, five of the seven returned to their own eggs. Females typically remain with their eggs and do not forage while attending them.

In an experiment, females were offered sites with depressions in soil, but only half of them were covered with moss (Forester 1979b). Females preferred holes with moss cover in all arrangements tested. That is some of the best evidence I have found indicating preference for bryophytes.

This species is known to avoid predation by early detection of a nearby predator. Chemicals released by wounded members of its own species and others in the genus serve as a warning to take cover (Lutterschmidt et al. 1994).

Desmognathus monticola (Seal Salamander)

This species (Figure 52) ranges from the central and southern Appalachians of western Pennsylvania to central Alabama (Camp & Tilley 2011) and is more aquatic than is *Desmognathus ochrophaeus* (Bruce 1990). It is typically found among mosses on rocks in streams (LeGrand et al. 2001). It lays its eggs in rapid streams where they are sometimes placed under mosses (Camp & Tilley 2011).

![Figure 52. *Desmognathus monticola* on a bed of streamside mosses. Photo by Bill Peterman.](image)

Desmognathus santeetlah (Santeetlah Dusky Salamander, Plethodontidae)

The Santeetlah Dusky Salamander (Figure 53) is restricted to the Great Smoky, Great Balsam, and Unicoi Mountains of the southwestern Blue Ridge Mountains in Tennessee and North Carolina, USA. *Desmognathus santeetlah* (Figure 53) is a higher elevation segregate of the Northern Dusky Salamander (*Desmognathus fuscus*) in the southern Appalachians, USA. One of the factors that maintains it as a separate species is that it has a different larval environment (Beachy 1993). This species broods its ca 20 eggs under mosses on logs and rocks at the edges of headwater streams (Jones 1986; Tilley 1988; Beachy 1993), compared to the soil depository under mosses, logs, and rocks for eggs of *Desmognathus fuscus* (Tilley 1973).

Instead of scurrying into the mud to hide, like *D. ochrophaeus* (*Allegheny Mountain Dusky Salamander; Figure 49), this one remains motionless (Tilley 1981). Both *D. santeetlah* and *D. ochrophaeus* occur in the Southern Appalachians (Tilley 1973) and both seem to prefer brooding sites under mosses on logs or rocks. In some locations, only *D. santeetlah* nesting sites can be found (Tilley et al. 1978), but in others both species occur, suggesting that under some conditions there may be competition for suitable nesting sites. However, *D. santeetlah* oviposits mostly under mosses on rocks or logs in seepage areas.

![Figure 53. *Desmognathus santeetlah* (Santeetlah Dusky Salamander), a high elevation salamander from the southern Appalachians. Photo © Gary Nafis at CaliforniaHerps.com.](image)

Desmognathus aeneus (Seepage Salamander)

Also known as the Cherokee Salamander and Alabama Salamander, the Seepage Salamander (Figure 54) occurs from extreme southwestern North Carolina, adjacent Tennessee, and southwestward through northern Georgia (Figure 55) to north central Alabama, USA. In Georgia, Martof and Humphries (1955) found it under leaves, mosses, and stones, especially near seepages and other places of high humidity (Figure 55).

The 11-14 eggs of *D. aeneus* are deposited under mosses, as well as under logs, leaf litter, and mats of roots in seepage or wet areas near streams (Figure 55) (Bishop & Valentine 1950; Valentine 1963; Harrison 1967; Jones 1981; Collazo & Marks 1994). Females remain with the eggs during incubation (Brown & Bishop 1948; Bishop & Valentine 1950). Although this species is not considered a climber, Wilson (1984) observed them jumping from
branch to branch in bushes and climbing up grasses. They feed mostly on insects, but their diet also includes nematodes, earthworms, land snails, isopods, amphipods, centipedes, arachnids, and millipedes, all items that can be found among mosses as well as leaf litter (Folkerts 1968; Donovan & Folkerts 1972; Jones 1981).

Figure 54. Seepage Salamander, *Desmognathus aeneus* on *Atrichum*. Photo by Todd Pierson.

Figure 55. Habitat of the Seepage Salamander *Desmognathus aeneus* in Georgia, USA. Photo © Gary Nafis at CaliforniaHerps.com.

Desmognathus wrighti (Pygmy Salamander)

Known as the Pigmy Salamander (Figure 56), this small species occurs in woodland areas, especially above 1400 m asl within the southern Appalachians, including the Great Smoky Mountains of North Carolina and Tennessee, the Plott Balsam Mountains and Great Balsam Mountains of North Carolina, USA; it is also common between 950 m and 1400 m asl within the Cowee Mountains, Nantahala Mountains, and Unicoi Mountains of North Carolina, USA.

In the southern Nantahala Mountains, North Carolina, USA, *Desmognathus aeneus* (Seepage Salamander; Figure 54) and *D. wrighti* (Pygmy Salamander; Figure 56) are sympatric (ranges overlap) in high elevations (Hining & Bruce 2005). Both occupy clumps of moss, damp leaf litter, or shelter under stones or logs near streams and seepages in the deciduous forest during the spring (Figure 55). *Desmognathus wrighti* not only occupies wet areas, but can also be found up to two meters high in a tree on its leaves (Hairson, 1949; Organ, 1961). The two species manage to remain distinct by having different oviposition times, early May for *D. aeneus* and early August for *D. wrighti* (Harrison 2009).

Figure 56. Pygmy Salamander, *Desmognathus wrighti*. Photo by Michael Graziano.

Desmognathus quadramaculatus (Black-bellied Salamander)

From Monroe County, West Virginia eastward to Henry County, Virginia, and southward through eastern Tennessee, western North and South Carolina to northeastern Georgia, in the Appalachian Mountains, USA. Peatlands are good habitats for salamanders, and *Desmognathus* is certainly represented there. In the *Sphagnum* habitat of the Tulula Wetland, North Carolina, USA, one can find *Desmognathus quadramaculatus* (Black-bellied Salamander; Figure 57), typically in streams (Amphibians: Tulula Wetlands). In North Carolina, it is known from among mosses in streams (LeGrand et al. 2001).

This species has a somewhat longer development time than some of the other *Desmognathus* species, requiring six years in males and seven in females to reach first reproduction in the southern Blue Ridge Mountains (Bruce 1988).

Beachy (1997) reported that *D. quadramaculatus* co-occurred with the salamander *Eurycea wilderae*, another bryophyte dweller. Unfortunately for *E. wilderae*, it provides dinner for *D. quadramaculatus*. Larval growth rates of *E. wilderae* differed with different predator densities, but survivorship did not differ, suggesting that provided no advantage in the low productivity of Appalachian streams.

Figure 57. *Desmognathus quadramaculatus* (Black-bellied Salamander). Photo by Bill Peterman.
Desmognathus ocoee (Ocoee Salamander)

The Ocoee Salamander (Figure 58) occurs in two *allopatric* (non-overlapping) units, one in the Appalachian Plateau of northeastern Alabama and adjacent Tennessee, and the other in the southwestern Blue Ridge Physiographic Province of western North Carolina, eastern Tennessee, extreme western South Carolina, and northern Georgia, south of the Pigeon River (Balsam, Blue Ridge, Cowee, Great Smoky, Nantahala, Snowbird, Tusquitee, and Unicoi Mountains), USA (Frost 2011).

Figure 58. *Desmognathus ocoee* (Ocoee Salamander). Photo by John D. Willson.

Along with *D. quadramaculatus*, one can find *D. ocoee* in the *Sphagnum* habitat of the Tulula Wetland, North Carolina, USA (Amphibians: Tulula Wetlands), where their typical habitat is streams. Petranka et al. (1993) estimated that timber-harvesting rates of the 1980's and early 1990's caused an annual loss of at least 14 million salamanders of all species in western North Carolina, increasing the importance of peatland refugia.

Typical predators on *D. ocoee* include beetles, but Hess and Harris (2000) showed that pond beetles did not eat their eggs. However, beetles from a stream punctured and consumed a large number of *D. ocoee* eggs.

In Macon County, North Carolina, eggs were mostly in nests embedded in mosses growing on rocks or in the stream bank or in the stream (Hess & Harris 2000). Bruce (1996) likewise found that most of the eggs of this species were located under moss on logs, soil, or rocks at the edges of streams, where females care for the eggs.

Phaeognathus hubrichti (Red Hills Salamander)

The Red Hills Salamanders (Figure 59) occur in the wooded Alabama Coastal Plain, southern edge of the Red Hills region, USA (Frost 2011). They generally stay in burrows where the humidity is high (Dodd 2011), but when they leave the burrows to forage they can encounter mosses in their habitat and may use them as foraging sites. Their diet of mostly land snails, ants, beetles, and spiders are all likely moss dwellers and perhaps account for the mosses found in some fecal pellets (Gunzburger 1999).

Figure 59. *Phaeognathus hubrichti*. Photo by Matthew J. Aresco.

Ensatina eschscholtzii (Monterey Ensatina)

When I was teaching species concepts, this was always one of my favorite examples. Armed with a film loop that showed the morphs and their habitats, I could introduce the difficulty in defining species in any practical way. At that time, several species were recognized, as suggested by breeding incompatibility between some populations, but now they are listed by Frost (2011) as a single species, *Ensatina eschscholtzii* (Figure 60), and, like Christopher (2005), Frost treats them as seven distinct subspecies.

The distribution of this superspecies is in Southwestern British Columbia and Vancouver Island, Canada, south through mesic Washington, Oregon, and California, USA, to northern Baja California, Mexico, in the Sierra San Pedro Martir and Sierra Juarez. Its distribution around the mountain range in western USA led to its designation as a *Rassenkreis*, a circle of races (Figure 68).

Hence, current thinking is that there is only one species within the genus. The subspecies are distributed up the Pacific coast of the USA, across the northern Central Valley, and south through the Sierras. The coastal and Sierran subspecies meet in the mountains of southern California and they behave as separate species.

Nevertheless, although some of these subspecies look quite different in the pictures that follow, adjacent salamanders recognize each other and can hybridize. For example, *Ensatina eschscholtzii eschscholtzii* hybridizes with *E. e. xantheoptica* and *E. e. klauberi*.

The recognized variants, not including hybrids, are:

- *Ensatina eschscholtzii eschscholtzii* (Figure 60)
- *Ensatina eschscholtzii klauberi* (Figure 61)
- *Ensatina eschscholtzii xantheoptica* (Figure 62)
- *Ensatina eschscholtzii picta* (Figure 63)
- *Ensatina eschscholtzii oregonensis* (Figure 64-Figure 65)
- *Ensatina eschscholtzii platensis* (Figure 66)
- *Ensatina eschscholtzii croceater* (Figure 67)

Figure 69 demonstrates the habitat of *Ensatina eschscholtzii oregonensis*.
Figure 60. *Ensatina eschscholtzii eschscholtzii*. Photo by William Flaxington.

Figure 61. *Ensatina eschscholtzii klauberi*. Photo © Gary Nafis at CaliforniaHerps.com.

Figure 62. *Ensatina eschscholtzii xanthoptica*. Photo by Vide Ohlin.

Figure 63. *Ensatina eschscholtzii picta*. Photo by William Flaxington.

Figure 64. *Ensatina eschscholtzii oregonensis*. Photo © Gary Nafis at CaliforniaHerps.com.

Figure 65. *Ensatina eschscholtzii oregonensis* amid mosses. Photo by Vide Ohlin.

Figure 66. *Ensatina eschscholtzii platensis*. Photo © Gary Nafis at CaliforniaHerps.com.

Figure 67. *Ensatina eschscholtzii croceator*. Photo © Gary Nafis at CaliforniaHerps.com.
The young were active under mosses at 1.2°C when the air temperature was -3.3°C, suggesting an insulating effect. The ground where salamanders were located was not frozen, apparently due to the protective cover of mosses. Unprotected soil, leaf litter, and surface of the mosses were frozen to a depth of about 1 cm and almost to the depth where the salamanders were active.

Hydromantes brunus (Limestone Salamander)

This species is known only from the area along the Merced River and North Fork Merced River, Mariposa County, California, USA, at 300-760 m asl (Frost 2011). The type was found under a moss-covered rock in Mariposa County, California, USA (Gorman 1954).

Hydromantes shastae (Shasta Salamander)

This species (Figure 70) is an endemic to the limestone substrates south of Mount Shasta near the Shasta Reservoir, Shasta County, California, USA at 300-910 m asl (Frost 2011). The type specimen was found under a small mossy log at a cave entrance (Gorman & Camp 1953). Eggs are terrestrial and have only been found in caves.

Road construction, quarrying, and changes in water levels cause this species to be vulnerable (IUCN 2010).

Summary

The Hynobiidae is a small family in Asia and Europe, with *Hynobius tokyoensis* migrating to the forest floor where mosses are among its hiding places. *Salamandrella keyserlingii* is also Asian and European and is one of the most cold-tolerant species of salamanders, spending winter in moss *hibernacula* and even surviving freezing in the permafrost for many years.

The Ambystomatidae extend from southern Canada to Mexico, living under mosses, among other forest floor habitats. Some species (*e.g.* *Ambystoma maculatum*) are common in peatlands. This species provides oxygen to its jelly-coated eggs by partnering them with the green alga *Oophila amblystomatis*.

In the Western Hemisphere, the Plethodontidae, including the large genus *Plethodon*, is a large family of temperate zone salamanders. Many of these are bryophyte dwellers. The *Cheat Mountain Salamander* (*Plethodon nettingi*) is usually associated with mosses.
with the leafy liverwort *Bazzania trilobata*, a rare example of a salamander associated with a specific bryophyte other than the genus *Sphagnum*. *Plethodon cinereus* often lives in *Sphagnum* peat, where it attempts to rob the pitcher plant leaves of the invertebrates living there. But it can also live under forest floor mosses such as *Leucobryum glaucum*. *Desmognathus* is found with mosses both in peatlands and in old-growth forests.

Peatlands are especially important for some species, such as members of *Plethodon* and *Ambystoma*. Nevertheless, *Sphagnum* and associated ponds are typically too acid for most salamanders. *Hemidactylum scutatum* (Four-toed Salamander) apparently uses *Sphagnum*. The *Four-toed Salamander* is the best known of the bryophyte dwellers, depositing its eggs under a variety of bryophytes, especially *Thujiadium* and *Sphagnum*. Mosses appear to be critical in its habitat, and loss of wetlands is a threat to its existence.

Stereocheilus marginatus lays its eggs underwater on the moss *Fontinalis*. *Desmognathus fuscus* lays eggs in the moist soil of stream banks, under mosses; a number of *Desmognathus* species use mosses for egg-laying sites.

Ensatina eschscholtzii subspecies form a Rassenkreis in California, USA, and mosses are often an important niche, where they can be found on the soil surface just under the moss.

Unknown species like *Hydromantes brunus* are likely to be living among mosses, invisible to the collector.

Acknowledgments

I thank Michael Graziano and Tony Swinehart for helping me get images and information on amphibians. David Wake helped me find other herpetologists with specific expertise I needed. Butch Brodie kindly reviewed the salamander sub-chapters and offered many suggestions and references. Gary Nafis not only gave me permission for use of numerous of his images, but he also suggested additional species I had not yet found. The CalPhoto and CaliforniaHerps websites have been invaluable for finding images and email addresses of the photographers, permitting me to gain permission and make contacts with the wonderfully helpful community of herpetologists. Wikipedia, AmphibiaWeb, and the IUCN websites have been invaluable for general habitat and distribution summaries and often for life history and other biological information as well, not to mention Google's fantastic search engine for both websites and published literature to verify the website information. Bryonettes, as usual, have been very helpful in seeking out other scientists and sending me anecdotal information that have made this and the succeeding subchapter as complete as they are. Others who gave permission for images are credited under the pictures. Not only have these people been helpful in providing pictures, but they have been very encouraging in the overall endeavor of creating these amphibian chapters. I appreciate all the individuals who placed images in the public domain where permission was not required. And thank you to Ralph Lutts for calling my attention to an error on the header.

Literature Cited

